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Abstract. Non-uniform subphotospheric horizontal flows may arise from differential rota-
tion of the sun’s interior as well as from a global meridional plasma circulation. The fluid
dynamics equations for a model of solar interior with the convective zone reveal a second
order singularity at locations where a non-uniform flow and eigen-modes of solar global os-
cillations are in resonance. This indicates a possibility for a local resonant amplification of
internal g-modes which makes them easier for observational detection.

1. INTRODUCTION

It is well known that various types of bulk oscillations exist and are being observed
on the Sun. These the so called helioseismic modes are equivalent to seismic modes of
the Earth and they are known to be of three characteristic typec of eigen modes: A
set of pressure driven acoustic p-modes, a single incompressible surface f -mode and a
set of gravity driven g-modes. The p-modes are being observed on the Sun and some
of their frequencies are precisely determined with relative errors of only 10−5.

All these modes are spatially localized and have perturbation amplitude distribu-
tions with one or more peaks located in the solar interior. An thorough overview
on helioseismology and its application in stellar diagnostics can be found in Gough
and Toomre (1991); Christensen-Dalsgaard et al. (1998) and Christensen-Dalsgaard
(1998).

2. MODEL AND EQUATIONS

In this work, we focus our attention on patterns of spatially localized horizontal
flows and their influence on stellar global seismic modes. The macroscopic flow ve-
locity ~v is taken horizontal with the speed U0(z) and all other physical parameters
of the basic state varying in the vertical direction z only. The applicability of the
Cartesian geometry in our analysis, it is valid only for perturbations of a sufficiently
small wavelength λ (R∗ ≫ λ) when the effects of stellar sphericity are unimportant.
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The medium is an ideal plasma initially in a stationary equilibrium:

∇p0 + ρ0(~v0 · ∇)~v0 = ρ0~g (1)

with the z−axis oriented toward the solar interior. The basic state temperature
and density profiles, T0(z) and ρ0(z) respectively, are assumed known and prescribed
according to the model applied. As ρ0(~v0 · ∇)~v0= 0 for horizontal z−dependent
motions, the flow patterns we consider do not affect the initial hydrostatic balance
for any flow profile U0(z) initially specified.

A suitable model function describing such a flow pattern can be taken in the fol-
lowing form (Čadež and Vanlommel, 2005):

U0(z) =
cU0ρc

ρ0(z)

[

cos
nπz

W

]2p+1

. (2)

The parameters p = 1, 2, ... and c = 0, 1, 2, ... determine respectively: the flow con-
centration at horizontal cell boundaries, and scaling of some reference flow speed U0

at z = 0.
The described basic state is subject to isentropic linear harmonic perturbations

having frequency ω and the horizontal wavenumber k which can also be expressed in
terms of the degree l by k2 = l(l +1)/R2

∗ (R2
∗≡ R⊙ = 696 Mm - the Solar radius). To

remain within the applicability of the Cartesian geometry, the wavelength λ ≡ 2π/k
must be sufficiently small as to satisfy the condition R⊙ ≫ λ which is equivalent to
l ≫ 2π ≈ 6. In this case, the degree l and the horizontal wavenumber k are mutually
related as l ≈ kR⊙. These perturbations are governed by standard equations of fluid
dynamics which reduce to two linear equations for the vertical displacement ξz and
the perturbed pressure P (Čadež and Vanlommel, 2005):

D
dξz

dz
= C1ξz − C2P, D

dP

dz
= C3ξz − C1P. (3)

The coefficients D, C1, C2 and C3 are given by

D(z) = ρ0(z)v2
s(z)Ω2(z), C1(z) = −ρ0(z)gΩ2(z),

C2(z) = Ω2(z) − ω2
s(z), C3(z) = ρ2

0(z)Ω2(z)v2
s(z)

[

Ω2(z) − ω2
BV (z)

]

.
(4)

where Ω, ωs and ωBV are the Doppler shifted wave frequency ω, the sound frequency
and the Brunt-Väisälä frequency respectively, defined as:

Ω ≡ ω − kU0(z), ω2
s ≡ v2

sk2, ω2
BV (z ≡ g

[

(γ − 1)
g

v2
s(z)

−
d

dz
ln T0(z)

]

. (5)

The system is locally stable against the convective instability if ω2
BV (z) > 0. In the

basic state we consider, this is assumed true in the solar corona and solar interior
while the unstable convection zone tends to establish approximately the adiabatic
temperature gradient yielding ω2

BV (z) = 0.
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3. RESULTS AND CONCLUSIONS

We see that Eqs (3)-(4) have a second order Doppler-type singularity at z = zr where
D(zr) = 0. At this location, the phase matching, or a resonant interaction between the
global mode with frequency ω and the flow, takes place: ω = kU0(zr). Consequently,
an instability develops causing the modal amplitude to increase in time by gaining
energy from the flow.

As the linear amplitudes grow, the effects of nonlinearities and plasma dissipa-
tions become important and cannot be ignored anymore which eventually leads to a
saturation of growth. The linear approach therefore only points out the fact that a
resonance exists where the linear solutions diverge. A full analysis of eigensolutions
in the vicinity of a resonance requires a nonlinear approach and taking dissipations
into account. In our case, the divergent linear solutions can easily be obtained in an
asymptotic form in the domain z ≈ zr where Eqs (3)-(4) reduce to a single equation:

d

dz

[

(z − zr)
2 dξz

dz

]

+
ω2

BV (zr)

(U ′
0)

2 ξz = 0, (6)

with U ′
0 ≡ dU0(z)/dz|z=zr

6= 0 and ω2
BV (zr) ≥ 0 in the considered basic state.

Eq (6) has solutions in form of powers ξz = const × |z − zr|
α which, after sub-

stitution into Eq (6), yields the following characteristic equation for α: α2 + α +

ω2
BV (zr) (U ′

0)
−2

= 0 whose two solutions α1,2 are:

α1,2 = −
1

2
± µ; µ =

[

(U ′
0)

2 − 4ω2
BV (zr)

]1/2

2|U ′
0|

.

Depending on whether µ is real or not, i.e. depending on the sign of |U ′
0|− 2ωBV (zr),

there exist two distinct types of solution to Eq (6):
If µ is real, i.e. if |U ′

0| ≥ 2ωBV (zr), the general solution is

ξz = a1|z − zr|
(µ−1/2) +

a2

|z − zr|(µ+1/2)
(7)

where a1 and a2 are the integration constants.
If µ is imaginary: µ = i|µ|, i.e. if |U ′

0| ≤ 2ωBV (zr), the particular solution of Eq
(7) takes the following form

ξz ∼ |z − zr|
α = |z − zr|

(−1/2±i|µ|) = |z − zr|
(−1/2)e(±i|µ| ln |z−zr|)

and the general solution to Eq (7) becomes

ξz = a1
cos(|µ| ln |z − zr|)

|z − zr|1/2
+ a2

sin(|µ| ln |z − zr|)

|z − zr|1/2
. (8)

In either case, the solution to the linear vertical displacement ξz diverges at z = zr

if dissipations and nonlinearities are ignored. In this paper, however, we are not
interested in exact numerical values for computed perturbation amplitudes in the
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resonance domain. It is only to draw attention to the existence of the Doppler reso-
nance which can act as a localized amplitude amplification mechanism for solar global
modes. For a model of solar interior discussed in Čadež and Vanlommel (2005), we
show that the this resonance can occur only for global modes whose wavelengths do
not exceed 1% of the Solar radius R⊙. Consequently, such a resonant wave amplifi-
cation can affect also the low frequency g−modes and thus lessen the difficulties of
their observational detection at the solar surface.
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